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Abs tract

Closed flow networks represent a mathematical model for

transportation networks, multiple resource computer systems

and computer communication networks. A fault-diagnosis

* technique for these networks is presented which can locate

all single edge failures In the network. This technique is

based on a flow causality relationship developed here. The

number of edges that need to be monitored is shown to be (n-1)

for an n-node network. These edges constitute the branches

of a tree in the network.
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I. Introduction

1
A flow network can be regarded as a mathematical model of a

large class of traffic systems such as computer communication

networks. Topologically, they form a network of interconnected
3

branches and nodes. A closed (open) network is a flow network

without (with) external inputs/outputs. An open network can be

restructured as a closed network with additional nodes(s). Closed

networks can be used to model multiple resource computer systems,
2

computer networks, etc.

In this paper, a technique will be developed to locate (diagnose)

faults in a closed flow network. The fault model used here

assumes that a fault in a communication link results in changing

the flow through the link. It will be further assumed that the

law of conservation of flow holds at any time. Specifically, it

is shown that by monitoring only flow through (n-1) edges for a n-

node system one can determine the location of failures that result

in the deviation of flow in other links.

This paper has two principal sections. In Section 2, a model

is developed for the closed flow network and this forms the basis

of the fault-diagnostic technique. Next, is Section 3, a flow

causality is developed which describes the relationship between

flows in different links when conservation of flow holds. Based

4on this, a fault-dignostic algorithm is developed.

In this paper the links in a system are classified into two

categories: observable links (o-link) and unobservable link

(u-link). The flows in the o-links are monitored; by observing

the flows through these links, information regarding failure in



other links is derived. A pattern of flow deviations in the

o-links is called diagnostic pattern. The correspondence

between diagnostic patterns and various faults is established.

This forms the basis of the fault-diagnostic technique.

II. Flow Model

A flow network can be represented in terms of a labeled,

directed graph:

S - <V, E, X(t)> where:

V = Ivii i - 1, 2, ..ni represents a set of n nodes which

connects two or more links

E = leil J1- 1, 2, ... , m I represents a set of edges which

connects the nodes in the graph.

X(t) = I x jt)j j = 1, 2, ...m and xj(t) represents the flow

through ej(t)j . This X(t) represents the set of labels for the

edges.

A flow vector X(t) can be defined as:

X(t) = [xl(t) , x2 (t), ... , Xm(t)] t

where E ]t represents the transpose operator.

All multiple links between two nodes can be combined into a

single link. Thus, S can be represented as a simple labeled graph.

Assuming that S is strongly connected, one has

n < m < n2-n.

i: Let Vk - vkl, Vk2 , ... , Vkn

represent a subset of V.

Let V k V-V

Definition: Let C(Vk) represent a directed cutset defined as:

C(Vk) " ekI ek is a directed edge from a node in Vk to Vk$.

Let the.total number of directed cutsets be q. It can be

-2-
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readily seen that:

n < q < 2n-2.

Let a kJ 1 if e C(Vk)

0, otherwise

Definition: Given a directed cutset C(Vk), let ak represent a

directed cut vector, defined as:

Akm [a kl , a k2, ... , a km]

Let u k(t) be the total amount of flow through the links

contained in C(Vk).

It can be readily seen that

uk(t) - AkX(t) k - l, 2, ... , q. (1)

The amount, uk(t) is referred to as the cut flow.

Using the gonservation law of flow, one has

duk(t)

dt = 0, k = 1, 2, ..., q. (2)

III. Flow Causality in Closed Networks

We now develop some results to characterize the flow vector,

X(t), by using the fundamental equation described in (2).

From (1) and (2), one has:

ak t - 0 k 1, 2, ... , q (3)

Let AX(t) - [6x 1 (t), Sx2 (t),..., 6xm(t)J, where

6xi(t) - xi(t+At)_xi(t) represents a small change of flow in the

i-th link between a small time interval, At.

Using the notation, one can rewrite (3) as:

Ak.AX(t)-O k a 1, 2, ..., q. (L)

Now consider the solutions of the si-.ultaneous equations

described in (4).

m-3-



Let S be a complete graph. Thus m =n 2-n and q -2n-2.

But the total number of linearly Independent equations in (4) can

be shown to be equal to

(=n-1) (n+l)

Thus there exists:

(n-i) (n-2 )
w - m-- 2 (5)

degrees of freedom for the system of simultaneous equations given

in (4).

Let the set of independent simulataneous equation in (4) be:

Ak.Ax(t) - 0 k - 1, 2, ... , s (6)

Let the solution of (6) be given as:

Ax(t)* - l x (t) Sx2  (t), ..., xm Ct)].

This solution in general can be expressed as a linear function

of s independent variables given as:

s a
ax *(t) a z * ij x

i (t) J * 1, 2, ... , m (7)
iml

where *ia 1, 0, -1.

Example 1: Consider a closed network consisting of 3 nodes and

6 links, as shown in Fig. 1. The relationship described in (6)

can be derived as:

As will be seen later, the results of the paper apply to incomplete

graphs, as well.



1 0 0 1 0 0 6x1 (t) 0
o o 1 0 0 1 ax2(t) 0

o 1 o 0 0 1 ax 3 (t) 0

1 0 0 0 1 0 Sx4 (t) = 0

0 0 1 0 1 0 6x5 (t) 0

x6 (t)

For n-3, the number of independent variables is w=l. Let

x 3(t) = z. The soultion, Ax*(z), can be expressed in terms

of z as:

,x*(z) -[z, z, z, -z, -z, -z3 (8)
It may be observed from the above solution that any deviation

in flow in one link affects all the other links according to (8).

We will call this type of relationship a flow causality of

the network.

This flow causality can be also described in terms of a node-

to-node matrix shown below:

D3(z) - - 0 z

z-Z 0.

The matrix Dn (z), for any n-node graph, will be referred to as a

flow causality matrix.

Let Z zi zi - axi (t), i 1, 2, ..., w be the set of w

independent variables in the solution of equation (6). The entries

in the matrix, D (z), can be expressed in terms of the variables in Z.n
In the following, an algorithm is described to construct the matrix

Dn(Z), for any general n. Let dij be the element in the i-th

row J-th column of Dn(z).

J-5



Algorithm to construct Dn(Z)

Al: Generate an undirected graph, G * (V, E), by excluding

the direction of each link in S.

A2: Choose a tree, T, from G so as to form a path. Assign the

number i to the i-th node in the path.

A3: Assign a parameter, zk to each link, e,,, in the cotree.

A4: Set dii = 0 for all i.

A5: For any dij , where i < J-2 and which has not been assigned in

A3; Assign dij = 0.

A6: Let dk(k+l) that value which satisfies the following:

n k
E E dij = 0 k = 1, 2, .., n-l

i=k+l J-l

A7: Set dij = -dji for i > J.

It may be noted that the above algorithm is general and is

not restricted to complete graphs only.

Example 2: Consider a closed network consisting of eight nodes

and seventeen links below:

Generate an undirected graph corresponding to Figure 2 shown

in Figure 3. Choose a tree (Gothic path shown in Figure 3) and

assign the parameters zk (k a 1, 2, ..., 10) to the links in the

cotree. We then have the following matrix based on the above

algorithm.

In the following, y variables correspond to the branches of

The chosen tree and z variables correspond to the links.

-6-
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0 -Yl Zl z2  0 z3  0 z4

Yl 0 -Y2 0 z5 0 z6  0

-Z1  Y2  0 -Y3 0 0 z8  z7

D8(Z) -z2  0 Y3 0 -Y4 0 z9 0

0 -z5  0 Y4 0 -Y5 0 zlO

-z3  0 0 0 Y5 0 -Y6  0

0 -z6 -z8 -z9  0 Y6 0 -Y7
-z4  0 -z7  0 -zl1 0 Y7 0

The relationships between y and z variables are given below:

Yl = Z1 + z2 + z3 + z4

Y2 = z1 + z2 + z3 + z4 + z5 + z6

Y3 = z2 + z3 + z4 + z5 + z6 + z + z 8

Y4 a z3 + Z4 + z5 + + z 7 + z 8 + z9

Y5 = z 3 + z4 + z6 + z7 
+ 8 + z9 

+ zl0

y6 0 z + z + z + z + z + z6 L 6 7 8 9 10

Y7 - z4+ z7 + Z10

IV. Fault diagnosis

It is assumed here that a fault in the network results in an

abnormal change of flow through one or more edges. If all the

edges are monitored then detection of such change is a trivial

problem. However monitoring all the edges may be impractical

since there are O(n 2 ) possible edges for an n-node network.

In this section, we provide a solution to this problem. A

technique is presented to locate faulty edges by observing6 _ _ _-7-



the flow on a small subset of edges. The number of edges to be

monitored need not exceed (n-1) for an n-node graph. Furthermore,

these edges constitute the branches of a tree and therefore

monitoring these edges may be easy to implement.

First we present an example to provide motivation for the

result presented later in the section.

Example 3: Consider the network shown in Figure 3. The following

table will be hereafter referred to as a flow causality table and can

be derived from the D matix shown in Example 2. This table

describes a relationship between the flows in different edges.

Table 1 Flow causality table for Example 2

Link e1 3 e1 4 e1 6 e8 1 e2 5 e 2 7 e3 8 e 3 7 e47 '58

el2  * 1 2 ,

23

e 3 4

e 4 5  *

e 5 6

e 6 7  41 • • •

e 78

This table provides complete information regarding how a flow

deviation in one edge results in compensating changes in other

edges. For example, change in flow e1 3 results in compensating

changes in e1 2 and e2 3.

By monitoring the flows through the branches of the tree,

one can obtain information regarding any changes of flow in

other edges. In fact, there exists a unique correspondence betweeni -8-|



the change in flow in any edge and the change of flow through the

branches of the tree. This fact can be used to design a syndrome table;

this table is shown below. Here, a l(0) represents a change (no change)

in the flow. It may be seen from the different syndrome patterns

that a faulty link which produces a change of flow through itself will

result in a change of flow in a combination of branches of the tree.

This combination is distinct for two different edges. Thus, a faulty

edge can be located by using the syndrome table.

e12 e2 3  e 34 e 4 5  e5 6  e6 7  e7 8  Faulty edge

1 0 0 0 0 0 0 e12

0 1 0 0 0 0 0 e23

0 0 1 0 0 0 0 e34

0 0 0 1 0 0 0 e 45  Table 2: Syndrome

0 0 0 0 1 0 0 e 56 Table

0 0 0 0 0 1 0 e6 7

0 0 0 0 0 0 1 e7 8

1 1 0 0 0 0 0 el3

1 1 1 0 0 0 0 e14

1 1 1 1 1 0 0 e1 6

1 1 1 1 1 1 1 e81

0 1 1 1 0 0 0 e2 5

0 1 1 1 1 1 0 e2 7

0 0 1 1 1 1 1 e 3 8

0 0 1 1 1 1 0 e37

0 0 0 1 1 1 0 e 4 7

0 0 0 0 1 1 1 e 5 8



In the following, we prove the general result:

Theorem 1: A failure in any edge in a closed flow network S, can be

diagnosed (located) by observing the flows through the branches of

any tree T in S.

Proof: Let the branches of a tree, T, correspond to o-links and the

remaining edges correspond to u-links.

An elementary cycle can be constructed by using only one

o-link and two or more u-links. These sets of elementary cycles

form a linearly independent set.

Suppose a failure arises in the o-link i in S. Let i be

contained in the elementary cycle Li. There are no other o-links

included in Li. Thus the symptom of the failure will appear in

o-link i only and hence is diagnosed.

On the other hand consider a failure that arises in u-link i.

Let i be included in the elementary cycles Li1 , Li2 , . Lir"

It may be seen that : (a) k > 2; (b) the failure in i will result

in a change of flow in exactly k, o-links contained in Lil, Li 2 ,... ,Lik

and (c) the combination Li1 , Li 2 ... , Lik is unique for each link i.

Hence this failure is also diagnosable. Q.E.D.

Corollary: The observable points in closed network S for single

failure diagnosis need not exceed (n-l).

It may be seen that certain multiple failures may also be

diagnosable. For example a double failure can be diagnosed if

they occur in two disjoint elementary cycles.

V. Conclusion:

This paper presents a fault-diagnosis technique for a closed

flow network. A flow causality is derived from the topology of

a flow network. Based on this, a technique is described

-10-



that locates all single edge failures by observing flow

through (n-i) edges. These edges constitute the branches of a

tree of an n-node network.

Other potential applications of the results of the paper to
4

other areas such as system fault-diagnosis, distributed computing

need to be investigated.

- ' -11-
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Figure 1 A closed network for Example 1
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